We have a new service - Ampere+ rent!
May
What we do / Home solutions

Autonomous energy for your home

Adjusted energy costs
Using stored energy when prices are high will save you money and lower your monthly costs.
Smart management
With the help of the application, you can precisely control the use of energy and manage costs.
Sustainable use
Maximize the use of renewable energy while reducing environmental impact.
What are the storage solutions
Home energy storage solutions designed for storage and later use of energy.

During the day, when the solar panels produce more electricity than the home consumes, the excess energy is stored in the battery. The stored energy can be used in the evening or on cloudy days when solar energy production is lower.
up to
50
%
savings on electricity costs per year
Energy production
Solar panels mounted on the roof capture sunlight and convert it into electricity.
Energy storage
The produced electricity is used to power household appliances. The remaining energy is stored in the battery.
Energy usage
During periods when the solar panels do not produce enough electricity (e.g., at night or in bad weather), the system uses the energy stored in the battery.
Routing to the power grid
When the battery is fully charged, in some systems, the remaining energy can be fed back into the grid, earning credits or advances from the power company.
Reduce worries and increase savings
Use our smart app to manage your energy consumption based on your usage, electricity prices and solar energy.
Learn more
Save on your electricity bills
The solar plant saves you money on energy costs from day one. Solar panels are a simple and reliable way to produce your own electricity and sell the remaining electricity to the grid.
Solar storage solutions
FAQ
What is an energy storage device and how does it work?

An energy storage device is a system that collects and stores energy for later use, helping to balance energy demand and supply. The work process is divided into three stages:

  1. Charging: Energy is obtained from the sun and converted into a storable form.
  2. Säilitamine: Energy is stored in chemical, mechanical or thermal form.
  3. Storage: The energy is converted back into usable electricity or heat.

Common solutions include lithium-ion batteries. Energy storage devices are important for the optimal use of renewable energy, as they allow energy to be consumed even during production interruptions.

Millised on salvestuslahenduste finantseerimisvõimalused?

Energiasalvestite, eriti liitium-ioonakude, peamised ohutusriskid hõlmavad järgmisi aspekte:

  1. Tulekahju ja plahvatusoht: Termiline ülekuumenemine, ülelaadimine või mehaanilised kahjustused võivad põhjustada akude süttimist või plahvatusi.
  2. Keemilised riskid: Akude kahjustumisel võivad eralduda mürgised gaasid (nt vesinikfluoriid) ning elektrolüütide lekked võivad olla korrosiivsed ja keskkonnale kahjulikud.
  3. Elektrilised ohud: Kõrge pinge ja ebakorrektne paigaldus võivad põhjustada elektrilööke ja lühiseid.
  4. Temperatuuritundlikkus: Akud on tundlikud äärmuslikele temperatuuridele, mis võib viia tõrgete ja ülekuumenemiseni.
  5. Keskkonnamõjud: Akude ebaõige utiliseerimine või lekked võivad saastada keskkonda.

Riskide minimeerimiseks on oluline tagada kvaliteetne disain, professionaalne paigaldus, kaitsemehhanismid ning süsteemi pidev järelvalve.

What are the benefits of energy storage?

The benefits of energy storage are as follows:

  1. Ensuring energy: Enable energy to be stored and used during production breaks, ensuring continuous supply even in the event of interruptions in renewable energy sources (e.g., solar panels).
  2. Increasing independence from the network: Reduce dependence on the electricity grid, enabling producers to optimize the consumption of self-produced energy and increase the autonomy of the energy system.
  3. Peak load management: Help reduce peak loads, which optimizes energy use and reduces fluctuations in electricity costs, providing greater cost efficiency.
  4. Integration of renewable energy: Optimize the use of renewable energy sources by storing overproduced energy and thereby reducing energy loss and increasing the overall efficiency of the system.

Security of energy supply: Ensure a continuous energy supply as a backup, reducing the impact of power outages and improving the reliability of the energy supply.

Can I use energy from energy storage to charge an electric car?

The stored energy can be used to charge an electric car. Very often, the battery capacity of an electric car is considerably larger. The capacity of the energy storage and the rated power of the inverter must be considered.

Kui ohutu on energiasalvesti minu kodus?

Kodused energiasalvestid on ohutud kui neid paigaldatakse ja hooldatakse vastavalt ohutusstandarditele sertifitseeritud ning professionaalse paigaldaja poolt. LFP akud on tunnduvalt ohutumad kui liitiumioon akud, mida kasutatakse autodes ning kodutehnikas. Liitium-ioon aku kahjustamisel tekib gaas, mis kokkupuutes hapnikuga tekitab põletamis reaktsiooni. Sellepärast me kuulame tihti autode ja telefonide süttimisest. LFP akude tehnoloogia on teistsugune. Kui LFP cell rikneb/katkeb sellist keemilist reaktsiooni ei toimu. Ehk aku ise põlema ei lähe, mis teeb kodulahenduste akud turvalisemaks.

Kas energiasalvestid töötavad ka voolukatkestuse ajal?

Jah, energiasalvestid töötavad ka elektrikatkestuse ajal kui süsteem on varustatud hübriid-inverteriga, mis toetab varutoite režiimi. Selline inverter suudab võrguühenduse katkemisel automaatselt lülituda energiasalvestile ja jätkata kodu varustamist elektriga. Süsteem peab olema piisava salvestusvõimsusega, et katta tarbimisvajadused katkestuse ajal.

Kui kaua energiasalvesti laadimine aega võtab?

Energiasalvesti täislaadimise periood sõltub energiasalvesti nimivõimsusest ning kasutusel oleva hübriid-inverteri nimivõimsusest. Enimlevivad nimivõimsused hübriid-inverterite puhul jäävad 10-15 kWh vahemikku ning energiasalvestid 15-30 kWh. Näiteks: 15 kWh hübriid-inverter suudab täis laadida 30 kWh energiasalvesti kahe (2) tunni jooksul.

Is a grid inverter also suitable for using an energy storage device?

A hybrid inverter is suitable for use as an energy storage device, which can both store energy from solar panels and, if necessary, direct energy from the battery or network to home use.

How is the energy storage device compatible with solar panels?

The energy storage device is compatible with solar panels by storing excess solar energy that can be used later, such as at night or in cloudy weather. A hybrid inverter manages energy flows by converting the electricity produced by the panels for immediate consumption or storage in batteries. When the solar panels are not producing energy, what is stored in the battery is used, reducing dependence on the grid and reducing electricity costs. When the battery is fully charged, excess energy can be fed back into the grid. This system increases energy independence and optimizes costs.

Kas energiasalvesti aitab mul elektriarvet vähendada?

Can the energy storage device help me reduce my electricity bill?

An energy storage device helps to reduce electricity bills, especially if you use renewable energy, i.e. solar panels. The main ways in which an energy storage can help save costs:
1. Shifting consumption to cheaper hours: By storing electricity when the price of electricity is low (e.g., at night) and using it during peak hours when the price is higher.
2. Optimization of renewable energy: If you have solar panels, you can store the energy produced during the day but not immediately used and consume it later, for example in the evening, instead of buying more expensive electricity from the grid.

Reducing network charges: technical maintenance work: In some places, network charges are also applied to the consumption depending on the peak consumption level. By storing energy and using it to reduce load, these charges can be reduced.

Kui palju energiasalvesti lahendused maksavad ja milline on nende tasuvusaeg?

Energiasalvesti lahenduste maksumus ja tasuvusaeg sõltuvad kasutatavast tehnoloogiast, süsteemi suurusest ning rakendusalast.
Peamised tegurid tasuvusaja määramisel: 

  1. Energiakulude kokkuhoid;.
  2. Elektrihinna kõikumine (tipptundidel salvestatud energia müük).
  3. Süsteemi efektiivsus ja hoolduskulud.
Kui pikk on energiasalvestite eluiga?

Energiasalvestite eluiga sõltub tehnoloogiast ja kasutustingimustest.

Meie tooteportfelli kuuluvad ainult Liitium-ioonakud ning eluiga on neil 15 aastat või 6000 laadimistsüklit. Peale seda on akud 70%. Eluea määravad laadimistsüklid, töötemperatuur ja hooldus

Kuidas toimub energiasalvestite laadimine ja tühjendamine?

Energiasalvestite laadimine ja tühjendamine toimub läbi elektrokeemiliste protsesside ja elektroonilise juhtimise:

  1. Laadimine: Salvesti võtab elektrit allikast (nt päikesepaneelid). Liitiumiioonid liiguvad katoodist anoodi. Laadimiskontroller reguleerib voolu ja pinget, et vältida ülelaadimist.
  2. Tühjendamine: Energiavajaduse korral liiguvad ioonid anoodist tagasi katoodi, vabastades elektrit. Inverter muudab alalisvoolu (DC) vahelduvvooluks (AC). Süsteem jälgib aku taset, et vältida ületühjenemist.

Protsessi juhitakse elektrooniliselt, tagades tõhususe ja ohutuse.

Want more information? Feel free to write or give me a call.
We’ve made the process as simple and quick as possible, so you can get exactly what you need. Contact me, and I’ll find the perfect solution for you.
Riko Petrov
Sales manager
Thank you!
Your message has been successfully sent.
Something went wrong! Please try again.