An energy storage device is a system that collects and stores energy for later use, helping to balance energy demand and supply. The work process is divided into three stages:
Common solutions include lithium-ion batteries. Energy storage devices are important for the optimal use of renewable energy, as they allow energy to be consumed even during production interruptions.
Energiasalvestite, eriti liitium-ioonakude, peamised ohutusriskid hõlmavad järgmisi aspekte:
Riskide minimeerimiseks on oluline tagada kvaliteetne disain, professionaalne paigaldus, kaitsemehhanismid ning süsteemi pidev järelvalve.
The benefits of energy storage are as follows:
Security of energy supply: Ensure a continuous energy supply as a backup, reducing the impact of power outages and improving the reliability of the energy supply.
The stored energy can be used to charge an electric car. Very often, the battery capacity of an electric car is considerably larger. The capacity of the energy storage and the rated power of the inverter must be considered.
Kodused energiasalvestid on ohutud kui neid paigaldatakse ja hooldatakse vastavalt ohutusstandarditele sertifitseeritud ning professionaalse paigaldaja poolt. LFP akud on tunnduvalt ohutumad kui liitiumioon akud, mida kasutatakse autodes ning kodutehnikas. Liitium-ioon aku kahjustamisel tekib gaas, mis kokkupuutes hapnikuga tekitab põletamis reaktsiooni. Sellepärast me kuulame tihti autode ja telefonide süttimisest. LFP akude tehnoloogia on teistsugune. Kui LFP cell rikneb/katkeb sellist keemilist reaktsiooni ei toimu. Ehk aku ise põlema ei lähe, mis teeb kodulahenduste akud turvalisemaks.
Jah, energiasalvestid töötavad ka elektrikatkestuse ajal kui süsteem on varustatud hübriid-inverteriga, mis toetab varutoite režiimi. Selline inverter suudab võrguühenduse katkemisel automaatselt lülituda energiasalvestile ja jätkata kodu varustamist elektriga. Süsteem peab olema piisava salvestusvõimsusega, et katta tarbimisvajadused katkestuse ajal.
Energiasalvesti täislaadimise periood sõltub energiasalvesti nimivõimsusest ning kasutusel oleva hübriid-inverteri nimivõimsusest. Enimlevivad nimivõimsused hübriid-inverterite puhul jäävad 10-15 kWh vahemikku ning energiasalvestid 15-30 kWh. Näiteks: 15 kWh hübriid-inverter suudab täis laadida 30 kWh energiasalvesti kahe (2) tunni jooksul.
A hybrid inverter is suitable for use as an energy storage device, which can both store energy from solar panels and, if necessary, direct energy from the battery or network to home use.
The energy storage device is compatible with solar panels by storing excess solar energy that can be used later, such as at night or in cloudy weather. A hybrid inverter manages energy flows by converting the electricity produced by the panels for immediate consumption or storage in batteries. When the solar panels are not producing energy, what is stored in the battery is used, reducing dependence on the grid and reducing electricity costs. When the battery is fully charged, excess energy can be fed back into the grid. This system increases energy independence and optimizes costs.
Can the energy storage device help me reduce my electricity bill?
An energy storage device helps to reduce electricity bills, especially if you use renewable energy, i.e. solar panels. The main ways in which an energy storage can help save costs:
1. Shifting consumption to cheaper hours: By storing electricity when the price of electricity is low (e.g., at night) and using it during peak hours when the price is higher.
2. Optimization of renewable energy: If you have solar panels, you can store the energy produced during the day but not immediately used and consume it later, for example in the evening, instead of buying more expensive electricity from the grid.
Reducing network charges: technical maintenance work: In some places, network charges are also applied to the consumption depending on the peak consumption level. By storing energy and using it to reduce load, these charges can be reduced.
Energiasalvesti lahenduste maksumus ja tasuvusaeg sõltuvad kasutatavast tehnoloogiast, süsteemi suurusest ning rakendusalast.
Peamised tegurid tasuvusaja määramisel:
Energiasalvestite eluiga sõltub tehnoloogiast ja kasutustingimustest.
Meie tooteportfelli kuuluvad ainult Liitium-ioonakud ning eluiga on neil 15 aastat või 6000 laadimistsüklit. Peale seda on akud 70%. Eluea määravad laadimistsüklid, töötemperatuur ja hooldus
Energiasalvestite laadimine ja tühjendamine toimub läbi elektrokeemiliste protsesside ja elektroonilise juhtimise:
Protsessi juhitakse elektrooniliselt, tagades tõhususe ja ohutuse.